Molecular Arrangement in C₆₀ and C₇₀ Films on Graphite and Their Nanotribological Behavior

NANO LETTERS 2001 Vol. 1, No. 2 101–103

S. Okita† and K. Miura*

Department of Physics, Aichi University of Education, Hirosawa 1, Igaya-cho, Kariya 448-8542, Japan

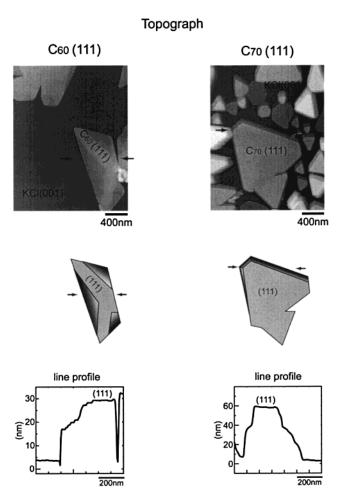
Received December 7, 2000

ABSTRACT

The nanotribological behavior of C_{60} and C_{70} films on graphite has been studied. C_{60} molecules on graphite begin to grow in a monolayer form, whereas C_{70} molecules begin to grow in a bilayer form. The shear stress between a C_{60} monolayer and graphite was estimated to be about 0.2 GPa. For C_{60} (111) films, a change of tip motion, from one-dimensional stick-slip to two-dimensional zigzag stick-slip with decrease of a loading force, appears.

The mechanical properties of fullerenes have attracted much attention in the field of materials science. Particularly, C₆₀ and C₇₀ solids have been predicted to be good lubricant materials because of their nearly spherical shape and low surface strength.¹⁻³ Our previous letter³ reported on the nanotribological behavior of the C₆₀ islands on KCl(001) using frictional force microscopy. Along the different scanning directions of $\langle 110 \rangle$ and $\langle 112 \rangle$ of a C₆₀(111) surface, a tip has performed one-dimensional stick-slip and zigzag stick-slip motions on the order of a load of nN, respectively, although at a larger loading force, it destroyed the $C_{60}(111)$ surface. Also, water adsorption on the C₆₀ films gave a lower frictional force, indicating that C₆₀ molecules rotate or translate at the (111) surface. Thus, the C_{60} films were expected to exhibit various behaviors depending on the loading force, scanning direction, and relative humidity.

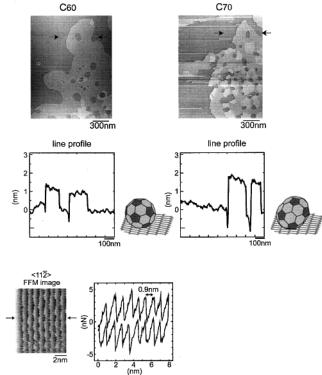
In this letter, we report the growth mode of C_{60} and C_{70} films on graphite using atomic force microscopy and frictional force microscopy, and we focus on the nanotribological properties of C_{60} and C_{70} films.

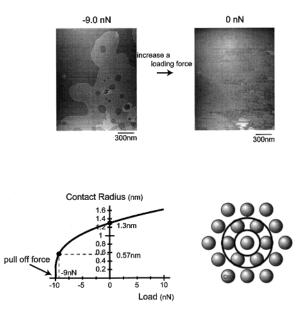

The C₆₀ and C₇₀ films on highly oriented pyrolytic graphite (HOPG) and KCl(001) were prepared by evaporation from a BN crucible. The temperatures of their substrates during evaporation were kept at range of 150 °C to 200 °C. Normal and lateral forces were measured simultaneously under argon atmosphere at room temperature using a commercially available instrument (Seiko Instruments Inc., SPI-3700). The scan speed was 0.13 m/s. A rectangular silicon cantilever

with a normal spring constant of 0.05 N/m was used. Zero normal force is defined as the position at which the cantilever is not bent.

Figure 1 shows the atomic force microscope (AFM: topograph) images of C₆₀ and C₇₀ islands on a KCl(001) surface. Their islands consist of scores of molecular layers. The (111) facets of the C_{60} and C_{70} islands appear, which form parallel to the KCl(001) substrate. Such island growth occurs in cases where an intermolecular interaction is stronger than a molecule-substrate interaction, as reported in previous papers.4-6 Thus, it is concluded that C₆₀-C₆₀ and $C_{70}-C_{70}$ interactions are stronger than $C_{60}-KCl(001)$ and C₇₀-KCl(001) interactions, respectively. Figure 2 shows the AFM (topograph) images of C₆₀ and C₇₀ films on a graphite surface at the initial stage of growth. The height of the C₆₀ films on the middle of Figure 2 is approximately 1 nm, exhibiting a monolayer. As shown at the bottom of Figure 2, the high-resolution frictional force microscope (FFM) image of the C₆₀ monolayer has a periodicity of 0.9 nm, which shows a zigzag motion along the $\langle 112 \rangle$ scanning direction of the C₆₀ monolayer.³ Thus, the existence of the monolayer exhibits epitaxial growth on graphite. As shown by Gravil et al., the growth of this monolayer indicates that C₆₀ molecules grow on graphite such that the hexagonal face of a C₆₀ molecule pairs with the hexagonal face of the second graphite layer, so as to continue the natural stacking (AB stacking) of the graphite. The height of the C₇₀ films in the middle of Figure 2 is about 2 nm, exhibiting a bilayer. Here, it should be noted that there does not exist any C₇₀ monolayer on graphite in our experiments. Because the hexagonal face in a C₇₀ molecule does not situate on the top of its ellipsoid, as shown on the middle of Figure 2, it may not always be

^{*} To whom correspondence should be addressed. E-mail: kmiura@auecc.aichi-edu.ac.jp.


[†] Present address: Graduate School of Engineering, Nagoya University..


Figure 1. Atomic force microscope (AFM: topograph) images of C_{60} and C_{70} islands on a KCl(001) surface. The (111) facets of the C_{60} and C_{70} islands appear, which form parallel to a KCl(001) substrate. At the bottom, line profiles depicted by the arrows are illustrated.

stable to pair with the hexagon face of the graphite in a monolayer manner.

Figure 3 shows how the AFM image from the C_{60} monolayer of Figure 2 changes by increasing a loading force. One notes that the C₆₀ monolayer on graphite is swept up by increasing up to a load of 0 nN. Using the Herztian continuum theory, 8,9 the contact radius versus the tip load estimated using a pull-off force of -10 nN and a tip radius of 15 nm is shown on the bottom of Figure 3. At a loading force of 0 nN, the contact radius between the tip and the C₆₀ monolayer surface is estimated to be about 1.3 nm, exhibiting that the contact area between the tip and the C₆₀ monolayer is seven molecular dimensions. Then, the mean lateral force was about 3 nN. Thus, assuming that seven molecules are moved by a lateral force of 3nN with the tip, the mean shear force between the single C₆₀ molecule and the graphite is estimated to be about 0.4 nN, such that the shear stress between the C₆₀ monolayer and the graphite is estimated to be about 0.2 GPa. For similar experiments with C₇₀ films on graphite, the C₇₀ films were easily swept up at loading forces smaller than those of the C₆₀ films. Thus, this exhibits that the interaction between the C₇₀-graphite interfaces is weaker than that between the C_{60} -graphite interfaces.

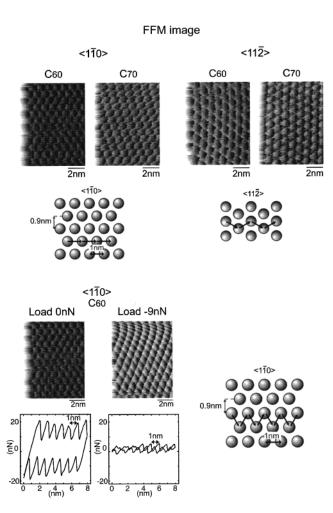


Figure 2. AFM (topograph) images of C_{60} and C_{70} films on a graphite surface at the initial stage of growth. In the middle, line profiles depicted by the arrows are illustrated. The height of C_{60} films is about 1 nm, exhibiting a monolayer. At the bottom of the figure, the high-resolution frictional force microscope (FFM) image of the C_{60} monolayer has a periodicity of 0.9 nm, which shows a zigzag motion along the $\langle 11\bar{2} \rangle$ scanning direction of the C_{60} monolayer. The height of C_{70} films is about 2 nm, exhibiting a bilayer.

Figure 3. Change of the AFM (topograph) image from the C_{60} monolayer of Figure 2 with an increase in the loading force. One notes that the C_{60} monolayer on graphite is swept up by increasing up to a load of 0 nN. Using the Herztian continuum theory, the contact radius versus the loading force was estimated and is shown at the bottom, where the pull-off force is -10 nN. Contact radii at loading forces of 0 nN and -9 nN are 1.3 nm (solid circle) and 0.57 nm (dotted circle), respectively.

Nano Lett., Vol. 1, No. 2, **2001**

Figure 4. High-resolution FFM images from (111) surfaces of C_{60} and C_{70} films. For the $\langle 1\bar{1}0 \rangle$ and $\langle 11\bar{2} \rangle$ scanning directions, the samples exhibit one-dimensional stick-slip and two-dimensional zigzag motions, respectively. In the case of the $\langle 1\bar{1}0 \rangle$ scanning direction of the C_{60} (111) films on the bottom of the figure, it should be interesting to note that the image at a loading force of -9 nN (pull-off force, -10 nN) changes from one-dimensional stick-slip to clear two-dimensional motions, exhibiting a single molecular contact with the tip, which gives a mean frictional force of 1 nN.

This result is consistent with the assumption that is stated above, that the C_{60} -graphite interfaces are composed of the

natural stacking (AB stacking), whereas the C₇₀-graphite interfaces are not so composed.

Figure 4 shows the high-resolution FFM images from (111) surfaces of C_{60} films and C_{70} films. For the $\langle 1\bar{1}0 \rangle$ and (112) scanning directions, the films exhibit one-dimensional stick-slip and two-dimensional zigzag motions, respectively, which is discussed in detail in the previous paper.³ In the case of the $\langle 110 \rangle$ scanning direction of the C₆₀(111) films, it is interesting to note that the image at a loading force of -9nN (pull-off force, -10 nN) changes from one-dimensional stick-slip to clear two-dimensional motions, exhibiting a single molecular contact with the probe tip, which gives a mean frictional force of 1 nN.10 In other words, this is a phase transition of stick-slip motion due to a change from a multi-molecular contact to a single molecular contact. Thus, the shear force between the tip and the single C_{60} molecule is estimated to be 1 nN. It should be noted that the shear force (1nN) between the tip and the C₆₀ molecule is lager than that (0.4nN) between the C₆₀ molecule and the graphite. This is consistent with the experimental result that a tip scanning at the C₆₀ monolayer or bilayer is unstable, whereas a tip scanning at several C₆₀ layers is stable.

Acknowledgment. We thank T. Sahashi and S. Kamiya for their assistance with the experiments.

References

- Lüthi, R.; Meyer, E.; Haefke, H.; Howald, L.; Gutmannsbauer, W.; Güntherodt, H.-J. Science 1994, 266, 1979.
- (2) Li, Z. Y. Surf. Sci. 1999, 441, 366.
- (3) Okita, S.; Ishikawa, M.; Miura, K. Surf. Sci. Lett. 1999, 442, L959.
- (4) Miura, K. Phys. Rev. 1995, B52, 7872.
- (5) Miura, K.; Maeda, K.; Yamada, T. Mater. Sci. Forum 1997, 239– 241, 663.
- (6) Miura, K.; Yamada, T.; Ishikawa, M.; Okita, S. Appl. Surf. Sci. 1999, 140, 415.
- (7) Gravil, P. A.; Devel, M.; Lambin, Ph.; Bouju, X.; Grard, Ch.; Lucas, A. A. Phys. Rev. 1996, B53, 1622.
- (8) Ishikawa, M.; Okita, S.; Minami, N.; Miura, K. Surf. Sci. 2000, 445, 488.
- (9) Fogden, A.; White, L. R. J. Colloid Interface Sci. 1990, 138, 414.
- (10) The frictional coefficients for both loading forces of 0nN and -9nN are together estimated to be about 1.

NL0055308

Nano Lett., Vol. 1, No. 2, **2001**